Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus × canescens.

Identifieur interne : 002272 ( Main/Exploration ); précédent : 002271; suivant : 002273

Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus × canescens.

Auteurs : Yonglu Ma ; Jiali He ; Chaofeng Ma ; Jie Luo ; Hong Li ; Tongxian Liu ; Andrea Polle ; Changhui Peng ; Zhi-Bin Luo

Source :

RBID : pubmed:23937227

Descripteurs français

English descriptors

Abstract

Ectomycorrhizas (EMs), which are symbiotic organs formed between tree roots and certain fungi, can mediate cadmium (Cd) tolerance of host plants, but the underlying physiological and molecular mechanisms are not fully understood. To investigate EMs mediated Cd tolerance in woody plants, Populus × canescens was inoculated with Paxillus involutus (strain MAJ) to establish mycorrhizal roots. Mycorrhizal poplars and non-mycorrhizal controls were exposed to 0 or 50 μM CdSO4 . EMs displayed higher net Cd(2+) influx than non-mycorrhizal roots. Net Cd(2+) influx was coupled with net H(+) efflux and inactivation of plasma membrane (PM) H(+) -ATPases reduced Cd(2+) uptake of EMs less than of non-mycorrhizal roots. Consistent with higher Cd(2+) uptake in EMs, in most cases, transcript levels of genes involved in Cd(2+) uptake, transport and detoxification processes were increased in EMs compared to non-mycorrhizal roots. Higher CO2 assimilation, improved nutrient and carbohydrate status, and alleviated oxidative stress were found in mycorrhizal compared to non-mycorrhizal poplars despite higher Cd(2+) accumulation. These results indicate that mycorrhizas increase Cd(2+) uptake, probably by an enlarged root volume and overexpression of genes involved in Cd(2+) uptake and transport, and concurrently enhance Po. × canescens Cd tolerance by increased detoxification, improved nutrient and carbohydrate status and defence preparedness.

DOI: 10.1111/pce.12183
PubMed: 23937227


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus × canescens.</title>
<author>
<name sortKey="Ma, Yonglu" sort="Ma, Yonglu" uniqKey="Ma Y" first="Yonglu" last="Ma">Yonglu Ma</name>
<affiliation>
<nlm:affiliation>College of Forestry and State Key Laboratory of Crop Stress Biology for Arid Areas.</nlm:affiliation>
<wicri:noCountry code="no comma">College of Forestry and State Key Laboratory of Crop Stress Biology for Arid Areas.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="He, Jiali" sort="He, Jiali" uniqKey="He J" first="Jiali" last="He">Jiali He</name>
</author>
<author>
<name sortKey="Ma, Chaofeng" sort="Ma, Chaofeng" uniqKey="Ma C" first="Chaofeng" last="Ma">Chaofeng Ma</name>
</author>
<author>
<name sortKey="Luo, Jie" sort="Luo, Jie" uniqKey="Luo J" first="Jie" last="Luo">Jie Luo</name>
</author>
<author>
<name sortKey="Li, Hong" sort="Li, Hong" uniqKey="Li H" first="Hong" last="Li">Hong Li</name>
</author>
<author>
<name sortKey="Liu, Tongxian" sort="Liu, Tongxian" uniqKey="Liu T" first="Tongxian" last="Liu">Tongxian Liu</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
<author>
<name sortKey="Peng, Changhui" sort="Peng, Changhui" uniqKey="Peng C" first="Changhui" last="Peng">Changhui Peng</name>
</author>
<author>
<name sortKey="Luo, Zhi Bin" sort="Luo, Zhi Bin" uniqKey="Luo Z" first="Zhi-Bin" last="Luo">Zhi-Bin Luo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:23937227</idno>
<idno type="pmid">23937227</idno>
<idno type="doi">10.1111/pce.12183</idno>
<idno type="wicri:Area/Main/Corpus">002504</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002504</idno>
<idno type="wicri:Area/Main/Curation">002504</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002504</idno>
<idno type="wicri:Area/Main/Exploration">002504</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus × canescens.</title>
<author>
<name sortKey="Ma, Yonglu" sort="Ma, Yonglu" uniqKey="Ma Y" first="Yonglu" last="Ma">Yonglu Ma</name>
<affiliation>
<nlm:affiliation>College of Forestry and State Key Laboratory of Crop Stress Biology for Arid Areas.</nlm:affiliation>
<wicri:noCountry code="no comma">College of Forestry and State Key Laboratory of Crop Stress Biology for Arid Areas.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="He, Jiali" sort="He, Jiali" uniqKey="He J" first="Jiali" last="He">Jiali He</name>
</author>
<author>
<name sortKey="Ma, Chaofeng" sort="Ma, Chaofeng" uniqKey="Ma C" first="Chaofeng" last="Ma">Chaofeng Ma</name>
</author>
<author>
<name sortKey="Luo, Jie" sort="Luo, Jie" uniqKey="Luo J" first="Jie" last="Luo">Jie Luo</name>
</author>
<author>
<name sortKey="Li, Hong" sort="Li, Hong" uniqKey="Li H" first="Hong" last="Li">Hong Li</name>
</author>
<author>
<name sortKey="Liu, Tongxian" sort="Liu, Tongxian" uniqKey="Liu T" first="Tongxian" last="Liu">Tongxian Liu</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
<author>
<name sortKey="Peng, Changhui" sort="Peng, Changhui" uniqKey="Peng C" first="Changhui" last="Peng">Changhui Peng</name>
</author>
<author>
<name sortKey="Luo, Zhi Bin" sort="Luo, Zhi Bin" uniqKey="Luo Z" first="Zhi-Bin" last="Luo">Zhi-Bin Luo</name>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (genetics)</term>
<term>Basidiomycota (physiology)</term>
<term>Biological Transport (genetics)</term>
<term>Cadmium (metabolism)</term>
<term>Carbohydrate Metabolism (genetics)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (genetics)</term>
<term>Glutathione (metabolism)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Inactivation, Metabolic (MeSH)</term>
<term>Malondialdehyde (metabolism)</term>
<term>Meristem (microbiology)</term>
<term>Models, Biological (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Oxidative Stress (genetics)</term>
<term>Plant Bark (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>Principal Component Analysis (MeSH)</term>
<term>Proline (metabolism)</term>
<term>Protons (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Spectroscopy, Fourier Transform Infrared (MeSH)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
<term>Superoxides (metabolism)</term>
<term>Wood (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Adaptation physiologique (génétique)</term>
<term>Analyse en composantes principales (MeSH)</term>
<term>Basidiomycota (physiologie)</term>
<term>Bois (métabolisme)</term>
<term>Cadmium (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Gènes de plante (génétique)</term>
<term>Inactivation métabolique (MeSH)</term>
<term>Malonaldéhyde (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Mycorhizes (physiologie)</term>
<term>Méristème (microbiologie)</term>
<term>Métabolisme glucidique (génétique)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
<term>Proline (métabolisme)</term>
<term>Protons (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Spectroscopie infrarouge à transformée de Fourier (MeSH)</term>
<term>Stress oxydatif (génétique)</term>
<term>Superoxydes (métabolisme)</term>
<term>Thiols (métabolisme)</term>
<term>Transport biologique (génétique)</term>
<term>Écorce (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cadmium</term>
<term>Glutathione</term>
<term>Hydrogen Peroxide</term>
<term>Malondialdehyde</term>
<term>Proline</term>
<term>RNA, Messenger</term>
<term>Sulfhydryl Compounds</term>
<term>Superoxides</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Biological Transport</term>
<term>Carbohydrate Metabolism</term>
<term>Genes, Plant</term>
<term>Oxidative Stress</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Adaptation physiologique</term>
<term>Gènes de plante</term>
<term>Métabolisme glucidique</term>
<term>Populus</term>
<term>Stress oxydatif</term>
<term>Transport biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Bark</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Méristème</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Meristem</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Bois</term>
<term>Cadmium</term>
<term>Feuilles de plante</term>
<term>Glutathion</term>
<term>Malonaldéhyde</term>
<term>Peroxyde d'hydrogène</term>
<term>Populus</term>
<term>Proline</term>
<term>Superoxydes</term>
<term>Thiols</term>
<term>Écorce</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Inactivation, Metabolic</term>
<term>Models, Biological</term>
<term>Principal Component Analysis</term>
<term>Protons</term>
<term>Spectroscopy, Fourier Transform Infrared</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse en composantes principales</term>
<term>Inactivation métabolique</term>
<term>Modèles biologiques</term>
<term>Protons</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Spectroscopie infrarouge à transformée de Fourier</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ectomycorrhizas (EMs), which are symbiotic organs formed between tree roots and certain fungi, can mediate cadmium (Cd) tolerance of host plants, but the underlying physiological and molecular mechanisms are not fully understood. To investigate EMs mediated Cd tolerance in woody plants, Populus × canescens was inoculated with Paxillus involutus (strain MAJ) to establish mycorrhizal roots. Mycorrhizal poplars and non-mycorrhizal controls were exposed to 0 or 50 μM CdSO4 . EMs displayed higher net Cd(2+) influx than non-mycorrhizal roots. Net Cd(2+) influx was coupled with net H(+) efflux and inactivation of plasma membrane (PM) H(+) -ATPases reduced Cd(2+) uptake of EMs less than of non-mycorrhizal roots. Consistent with higher Cd(2+) uptake in EMs, in most cases, transcript levels of genes involved in Cd(2+) uptake, transport and detoxification processes were increased in EMs compared to non-mycorrhizal roots. Higher CO2 assimilation, improved nutrient and carbohydrate status, and alleviated oxidative stress were found in mycorrhizal compared to non-mycorrhizal poplars despite higher Cd(2+) accumulation. These results indicate that mycorrhizas increase Cd(2+) uptake, probably by an enlarged root volume and overexpression of genes involved in Cd(2+) uptake and transport, and concurrently enhance Po. × canescens Cd tolerance by increased detoxification, improved nutrient and carbohydrate status and defence preparedness. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23937227</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>37</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus × canescens.</ArticleTitle>
<Pagination>
<MedlinePgn>627-42</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.12183</ELocationID>
<Abstract>
<AbstractText>Ectomycorrhizas (EMs), which are symbiotic organs formed between tree roots and certain fungi, can mediate cadmium (Cd) tolerance of host plants, but the underlying physiological and molecular mechanisms are not fully understood. To investigate EMs mediated Cd tolerance in woody plants, Populus × canescens was inoculated with Paxillus involutus (strain MAJ) to establish mycorrhizal roots. Mycorrhizal poplars and non-mycorrhizal controls were exposed to 0 or 50 μM CdSO4 . EMs displayed higher net Cd(2+) influx than non-mycorrhizal roots. Net Cd(2+) influx was coupled with net H(+) efflux and inactivation of plasma membrane (PM) H(+) -ATPases reduced Cd(2+) uptake of EMs less than of non-mycorrhizal roots. Consistent with higher Cd(2+) uptake in EMs, in most cases, transcript levels of genes involved in Cd(2+) uptake, transport and detoxification processes were increased in EMs compared to non-mycorrhizal roots. Higher CO2 assimilation, improved nutrient and carbohydrate status, and alleviated oxidative stress were found in mycorrhizal compared to non-mycorrhizal poplars despite higher Cd(2+) accumulation. These results indicate that mycorrhizas increase Cd(2+) uptake, probably by an enlarged root volume and overexpression of genes involved in Cd(2+) uptake and transport, and concurrently enhance Po. × canescens Cd tolerance by increased detoxification, improved nutrient and carbohydrate status and defence preparedness. </AbstractText>
<CopyrightInformation>© 2013 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Yonglu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry and State Key Laboratory of Crop Stress Biology for Arid Areas.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Jiali</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Chaofeng</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Tongxian</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Polle</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peng</LastName>
<ForeName>Changhui</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Zhi-Bin</ForeName>
<Initials>ZB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011522">Protons</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11062-77-4</RegistryNumber>
<NameOfSubstance UI="D013481">Superoxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4Y8F71G49Q</RegistryNumber>
<NameOfSubstance UI="D008315">Malondialdehyde</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9DLQ4CIU6V</RegistryNumber>
<NameOfSubstance UI="D011392">Proline</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="Y">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008658" MajorTopicYN="N">Inactivation, Metabolic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008315" MajorTopicYN="N">Malondialdehyde</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018519" MajorTopicYN="N">Meristem</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024301" MajorTopicYN="N">Plant Bark</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025341" MajorTopicYN="N">Principal Component Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011392" MajorTopicYN="N">Proline</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011522" MajorTopicYN="N">Protons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017550" MajorTopicYN="N">Spectroscopy, Fourier Transform Infrared</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013481" MajorTopicYN="N">Superoxides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">carbohydrates</Keyword>
<Keyword MajorTopicYN="N">gene expression</Keyword>
<Keyword MajorTopicYN="N">ion flux</Keyword>
<Keyword MajorTopicYN="N">mycorrhiza</Keyword>
<Keyword MajorTopicYN="N">nutrients</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
<Keyword MajorTopicYN="N">plasma membrane proton-ATPases</Keyword>
<Keyword MajorTopicYN="N">poplar</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23937227</ArticleId>
<ArticleId IdType="doi">10.1111/pce.12183</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="He, Jiali" sort="He, Jiali" uniqKey="He J" first="Jiali" last="He">Jiali He</name>
<name sortKey="Li, Hong" sort="Li, Hong" uniqKey="Li H" first="Hong" last="Li">Hong Li</name>
<name sortKey="Liu, Tongxian" sort="Liu, Tongxian" uniqKey="Liu T" first="Tongxian" last="Liu">Tongxian Liu</name>
<name sortKey="Luo, Jie" sort="Luo, Jie" uniqKey="Luo J" first="Jie" last="Luo">Jie Luo</name>
<name sortKey="Luo, Zhi Bin" sort="Luo, Zhi Bin" uniqKey="Luo Z" first="Zhi-Bin" last="Luo">Zhi-Bin Luo</name>
<name sortKey="Ma, Chaofeng" sort="Ma, Chaofeng" uniqKey="Ma C" first="Chaofeng" last="Ma">Chaofeng Ma</name>
<name sortKey="Ma, Yonglu" sort="Ma, Yonglu" uniqKey="Ma Y" first="Yonglu" last="Ma">Yonglu Ma</name>
<name sortKey="Peng, Changhui" sort="Peng, Changhui" uniqKey="Peng C" first="Changhui" last="Peng">Changhui Peng</name>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002272 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002272 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23937227
   |texte=   Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus × canescens.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23937227" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020